Bitte verwenden Sie Microsoft Edge, Google Chrome oder Firefox.
Sind Widerstände in einer Stromleitung hintereinander angeordnet, spricht man von einer Reihenschaltung. Bei dieser lässt sich der Gesamtwiderstand leicht durch die Addition der Einzelwiderstände berechnen.
Mit einer Parallelschaltung hast du es zu tun, wenn die Widerstände so angeordnet sind, dass ihre jeweiligen Pole miteinander verbunden sind. Um hier den Gesamtwiderstand zu berechnen, gehst du anders vor als bei der Reihenschaltung:
Stromkabel bestehen neben der Isolierung aus Metall wie Kupfer oder Aluminium und gehören damit zu den Leitern erster Klasse, den sogenannten Elektronenleitern. Möchtest du die Widerstände von Stromleitungen berechnen, benötigst du den Querschnitt (q), die Länge (l) und den spezifischen Widerstand des Materials (Formelzeichen Rho). Die Formel dazu lautet
Nehmen wir ein Beispiel: Der spezifische Widerstand von Kupfer ist 0.0171 Ohm mm²/m. Eine 100 Meter lange Kupferleitung mit 2,5 mm² Querschnitt hat somit einen Widerstand von R = 0.0171 Ohm mm²/m * 100 m / 2,5 mm² = 0,684 Ohm.
Bei Leitern zweiter Klasse, sogenannten Ionenleitern, ist der Widerstand abhängig vom spezifischen Widerstand des Elektrolyten und vom Abstand und dem Querschnitt der Elektroden. Da sich der Widerstand von Ionenleitern nicht so einfach berechnen lässt, bestimmt man ihn in der Regel mit einem Leitfähigkeitsmessgerät.
Alle Widerstände besitzen einen sogenannten Temperaturkoeffizienten. Er gibt an, um welchen Wert sich der Widerstand ändert, wenn seine Temperatur von einer festgelegten Referenztemperatur abweicht. Bei Leiten mit einem positiven Temperaturkoeffizienten steigt der Widerstand mit zunehmender Temperatur, weshalb man sie Kaltleiter nennt. Bei Heissleitern ist es genau anderes herum: ihr Widerstand nimmt mit steigender Temperatur ab. Häufig ist eine Temperaturabhängigkeit nicht erwünscht, je nach Anwendungsfall kommen aber gezielt Kalt- oder Heissleiter zum Einsatz, etwa als Temperatursensor.
Mit Hilfe des Ohmschen Gesetzes kann man Spannungen (U), Ströme (I) und Widerstände (R) in einem Stromkreis berechnen. Es gilt:
Möchtest du also beispielsweise den Strom berechnen, der durch einen an 50 Volt Spannung angeschlossenen 1000 Ohm Widerstand fliesst, rechnest du ganz einfach: I=U/R = 50 Volt / 1000 Ohm = 50 Milliampere. Aus dem Ohmschen Gesetz ergibt sich, dass eine Verdopplung der Spannung eine Verdopplung der Stromstärke verursacht. Ebenso gilt: Durch einen doppelt so grossen Widerstand fliesst nur halb so viel Strom.
Spannungen misst man mit einem Voltmeter, Ströme mit einem Amperemeter. Diese beiden Grössen und noch vieles mehr kannst du aber auch mit einem elektronischen Multifunktionsmessgerät (Multimeter) bestimmen. Spannungen werden immer parallel zu einem Verbraucher oder einer Spannungsquelle gemessen. Du verbindest also die jeweiligen Pole des zu messenden Verbrauchers mit den Messspitzen des Messgerätes. Willst du Ströme messen, musst du das Messgerät dagegen in Reihenschaltung mit dem zu messenden Widerstand betreiben.
Achtung: Wird ein Amperemeter oder ein auf Strommessung eingestelltes Multimeter versehentlich parallel geschaltet, wird ein Kurzschluss verursacht. Gibt es im Stromkreis keinen Verbraucher (beispielsweise beim direkten Anschluss an die Pole der Spannungsquelle), kann es im schlimmsten Fall zu Funkenschlag kommen und das Messgerät und die Spannungsquelle können zerstört werden. In der Regel verhindern jedoch Sicherungen im Messgerät und in der Spannungsquelle, dass dies geschieht.
Schaltkreise sind oft sehr komplex und du findest alle möglichen elektronischen Bauelemente und Module in Reihen- und Parallelschaltung vor. Sind in einem Wechselstromkreis ohmsche Widerstände zusammen mit Spulen und Kondensatoren geschaltet, kann die Spannung an diesen Bauteilen wesentlich grösser sein als die Gesamtspannung. Bei Messungen an diesen Bauteilen solltest du daher besonders vorsichtig sein.
Zum Vermeiden von Unter- oder Überspannung im Stromnetz ist eine regelmässige Überprüfung notwendig. Hochspannungen oder starke Ströme können jedoch nicht mit normalen Volt- oder Amperemetern gemessen werden. Stattdessen kommen sogenannte Messwandler oder Messumformer zum Einsatz, mit denen Spannungen oder Ströme indirekt gemessen werden.
Für die Messung von Wechselspannungen in Stromnetzen werden häufig spezielle Transformatoren verwendet, die die Hochspannung in ein leichter zu messendes Signal umwandeln. Das Messgerät ist dabei galvanisch von der Hochspannung getrennt, es gibt also keine Verbindung zwischen den beiden Spannungen. Dabei kommen auch Isolatoren zum Einsatz, um Mitarbeiter und Messgeräte vor Hochspannung zu schützen. Wechselströme, wie sie in der Energieversorgung üblich sind, können auch mit Stromsensoren wie einem Zangenstrommesser bestimmt werden. Dabei macht man sich das Generatorprinzip zunutze: In der Messspule im Stromsensor wird ein Strom induziert, der proportional zum Leiterstrom ist. In Gleichstromwandlern wird dagegen ein anderes Messprinzip angewandt. Hier werden die zu messenden Ströme mittels spezieller Sonden indirekt über die Stärke des Magnetfeldes gemessen.
Der Dahlandermotor ist eine spezielle Art einer Asynchronmaschine. Es handelt sich um eine Schaltungsvariante einer Drehstrommaschine, die als Generator und Elektromotor fungiert. Sie ist benannt nach Robert Dahlander, der diesen Motor im Jahre 1897 erfand und zusammen mit seinem Mitarbeiter Karl Avid Lindström patentieren liess. Die Asynchronmaschine dient dazu, zwischen verschiedenen Drehzahlen schalten zu können. Wir liefern dir die wichtigsten Informationen zum Thema Dahlanderschaltung.
Sicherlich hast du auf Schweizer Dächern schon einmal die blau glänzenden Solarpanele gesehen. Sie werden immer beliebter, da sie es erlauben, ausreichend Strom und Wärme für das eigene Haus zu produzieren. So können Verbraucher ihre Stromkosten deutlich senken und teils durch Einspeisung in das Netz sogar etwas hinzuverdienen. Die Solarpanels sind zwar in der Anschaffung nicht ganz günstig, aber du kannst dich von einem Förderprogramm unterstützen lassen. Durch die täglichen Einsparungen beim Strom lohnt sich die Solaranlage schon bald. In diesem Beitrag erfährst du, wozu Solarzellen dienen und welche Vorteile und Kosten sie dir bringen.
Das Potenzial, aus dem Lateinischen potentia für Kraft oder Leistung, bedeutet in der Physik, eine Arbeit zu verrichten. Als physikalische Grösse der klassischen Elektrodynamik, die sich sowohl mit der zeitlichen Veränderung von elektrischen und magnetischen Feldern als auch mit der Bewegung von elektrischen Ladungen innerhalb dieser Felder beschäftigt, ist ihr grundlegendes Merkmal die elektromagnetische Wechselwirkung. Der Elektromagnetismus gehört zu den vier Grundkräften der Physik und ist für die meisten alltäglichen Phänomene, wie natürliches Licht und Elektrizität, verantwortlich. Zwischen zwei entgegengesetzt geladenen Teilchen wird durch Arbeit, das Verschieben eines Teilchens, eine Potenzialdifferenz aufgebaut. Dies ist die elektrische Spannung U in Volt.
Wenn zu hohe Spannungen in Bauelementen, Spulen und Motoren erzeugt werden, ist der Einbau von Schutzdioden notwendig, die eine Überspannung ausbalancieren. Es gibt verschiedene Ausführungen, wobei häufig die Freilaufdiode zum Einsatz kommt. Eine Diode ist immer ein elektronisches Bauelement, das in den Stromkreislauf integriert wird und den Strom in eine Richtung passieren lässt, in die andere Richtung jedoch sperrt. Damit wird eine Überspannung verhindert und damit auch eine Beschädigung der Transistoren oder ähnlicher Bauelemente.
Heutige Steckdosen und Stecker-Systeme weisen fast alle einen Schutzkontakt oder Schutzleiter auf. Damit sind ortsfest installierte Geräte durch den Stecker geerdet, während bewegliche elektrische Geräte durch andere Schutzvorrichtungen gesichert sind, etwa Schutzisolierungen. Ein weit verbreiteter Stecker ist der Schukostecker. Er ist für alle europäischen Steckdosen geeignet. In anderen Ländern ist gegebenenfalls ein Reiseadapter notwendig, um elektrische Geräte an die dortigen Steckdosen anschliessen zu können.
Alles dreht sich um das Internet: Videokonferenzen, Online-Shopping, Streaming und Fernunterricht erfordern eine leistungsstarke Internetverbindung, die hohe Datenraten handhaben kann. In der Kommunikation, sowohl beruflich als auch privat, spielt das schnelle Internet via Glasfasernetz ebenfalls eine wichtige Rolle. Aber sind schon alle Gemeinden mit Glasfasernanschluss versorgt? Welche Geschwindigkeiten kannst du da überhaupt abrufen? Und wie funktioniert die Technologie hinter dem Glasfaserkabel? Wir beantworten die häufigsten Fragen zum Glasfaserausbau Schweiz kurz und leicht verständlich!